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The instability of a two-dimensional jet with respect to three-dimensional 
disturbances and that of an axially symmetric jet with respect to azimuthally 
periodic disturbances are studied, for the inviscid flow of a compressible fluid. 
In  both cases the undisturbed velocity is assumed to be uniform in the jet. It 
is shown analytically that a two-dimensional jet is unstable under small disturb- 
ances, either subsonic or supersonic. There is no upper limit in Mach number, as 
was found for a plane vortex sheet, above which the flow is completely stable. 
Numerical calculations for the eigenvalues for both the two-dimensional jet and 
the axially symmetric jet have been made. The results indicate that the increase 
of Mach number tends to stabilize the flow. For the two-dimensional jet, the 
larger the angle between the direction of wave propagation and that of the main 
flow, the more the flow will be destabilized. For the axially symmetric jet, the 
flow is more unstable under azimuthally periodic disturbances than under 
rotationally symmetric ones, at small wave number. 

1. Introduction 
Under certain circumstances, the central region of a high-speed jet may be 

such that the velocity is nearly constant, changing rapidly to the free stream 
velocity in a narrow boundary region. In  order to increase the understanding of 
stability theory of high-speed jets of a viscous compressible fluid, it  appears 
useful to investigate the stability of jet flows of an inviscid fluid with the 
previously mentioned profile. The stability of a tangential discontinuity has 
been considered by many authors for both incompressible and compressible 
fluids. For compressible flow, the stability of a plane vortex sheet has been 
considered by Landau (1944)) Hatanaka (1947), Pai (1954) and Miles (1958). 
Fejer & Miles (1963) infer that a generalization of the two-dimensional disturb- 
ance considered by Miles (1958) provides an extension of the stability criterion 
to three-dimensional disturbances. Pai and Miles also derived eigenvalue equa- 
tions for the Stability of a two-dimensional jet of an inviscid fluid under two- 
dimensional disturbances in their treatments of a plane vortex sheet. For 
incompressible flow, the axially symmetric jet of an inviscid fluid has been 
treated by Batchelor & Gill (1962). 

It is our purpose in this paper to carry on the further investigation on the 
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stability of the two-dimensional jet, and to study the stability of the axially 
symmetric jet of an inviscid compressible fluid. 

Until now, no rigorous evidence has been given to support the existence of 
supersonic disturbances, i.e. disturbances for which the wave speed is supersonic 
relative to the local flow. Studies of supersonic disturbances have been restricted 
by the non-diminishing disturbance amplitude at infinity. In  most cases it has 
been assumed that these disturbances are insignificant, because no discrete 
eigenvalue problem exists for them (pp. 70-71, Lin 1955). It should also be noted 
that Lin (1953) considered the effect of a limitation to subsonic disturbances as 
leading immediately to some criterion for stability and further noted that three- 
dimensional disturbances should be carefully considered. Miles pointed out that 
supersonic disturbances may cause instability for a plane vortex sheet; an inter- 
pretation could be inferred from Sommerfeld’s finiteness and radiation condi- 
tions. This may indeed explain the significance of supersonic disturbances. 
Although the radiation condition in a stability investigation has not met with 
universal acceptance, Miles’s remark may explain the possible significance of 
supersonic disturbances. 

The significance of supersonic disturbances in a finite region will be empha- 
sized in the present paper. In  a jet flow, we can expect a situation such that 
disturbances are supersonic relative to the finite flow region of the jet; and, after 
they go across the discontinuous layer of the main flow, they become subsonic 
relative to the surrounding free stream. The outer boundary condition is finite in 
this case. It will be shown later ( 8  2.3) that a neutral supersonic disturbance 
relative to the jet can exist in an inviscid jet. 

2. Two-dimensional jet 
2.1. Disturbance equations 

For an inviscid jet, either two-dimensional or axially symmetric, discontinuities 
in velocity and temperature distributions occur between the jet and the free 
stream. The thin layer of discontinuity is considered as a vortex sheet with 
infinite vorticity. Thus, for a two-dimensional jet, we have two parallel plane 
vortex sheets; for an axially symmetric jet, we have a cylindrical vortex sheet. 
Here we shall assume that the primary flow is parallel and irrotational, except 
at the plane or cylindrical vortex sheets; thus, the velocity components can be 
written as follows : 

where U is the constant main flow velocity, and ‘primed’ quantities are disturb- 
ance velocities. 

Three-dimensional disturbances are considered in our investigation of the 
two-dimensional jet; therefore, all disturbance quantities are functions of x, y, z 
and t .  Under small disturbances the linearized inviscid disturbance equations 
for a compressible fluid with constant specific heats are given by 

(1) u = U f U ’ ,  v = v’, w = w’, 

ap‘ ap’ ( a d  a d  
at ax ax ay continuity - + u - - = - p  - f-+-- , 
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momentum p r g + u g )  =-=, apt 

(Z  E) ay’ 

a w l )  ax a2 

pc*( t+Uz aT’ aT’) = - p  -(a,‘ -+-+- ;; 8,’) 

apt p - + u -  =-- 

apt p-+u- -  =-- 

- 

ax az ’ energy 

(3) 

(4) 

(52 

state p‘/p = p’/p+ T’/T, (7) 

where p is the density, p the pressure ?nd T the temperature of the flow. 
Consider the disturbance to be an oblique plane wave propagating at an 

angle 0 with respect to the x-direction. The dimensional disturbance quantities 
can be expressed as 

(8) 
u’7 21’7 w’ = WY), 9(Y), h(y))exp [i(ax +Pz - act)],  

p‘, T‘, Pt = (T(Y), @Y)7 m ( y ) }  exp @(.. +Px - 4 1 ,  
c = c, + i C i ,  where 

a is the wave-number in x-direction, and p is the wave-number in x-direction. 
The angle 0 is obtained from the relation 

0 = arc cos [a(a2+/P)-&]. ( 9) 

The real part of c in equation (8) is the wave propagation velocity in the x-direc- 
tion; the imaginary part of c indicates whether the disturbance is amplified, 
neutral or damped, according to whether cd is positive, zero or negative. 

By introducing the above disturbances, the disturbance equations become:t 

continuity i a ( U - c ) m  = -p(g’+iaf+iPh), 

momentum P ( U - c ) f  = -7T, 

iap(u-c)g = -d, 
aP(U-c)h = -P~T, 

energy ia(u-C) e = (y-  1) q9’+iaf+iph), 
state n-IF = rnlp+B/!F. 

2.2. Eigenvalue equation 

Elimination of m and 0 in (lo), (14) and (15) gives 

7T = @(ig’/a - f - /?h[Ol)/( u - c) . (16) 

Substitution o f f  g and h obtained from (11), (12) and (13) yields the differential 
equation for the pressure disturbance: 

1 ~ ” - - ( 1 - “ ( U - ~ ) / a ] ~ ~ o s ~ 0 ) ( ~ ~ + f p ~ ) 1 ~  = 0, (17) 

t ‘Prime’ is used to denote differentiation with respect to y in the rest of this section, 
-less otherwise specified. 

9-2 
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where a is the local velocity of sound. Therefore, the exact solution for n is 
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n = K ,  exp (d ty)  + K ,  exp ( - k&), (18) 

L2 = 2 / ( 0 1 2 + / 9 2 ) ,  (19) 

where K ,  and K ,  are constants to be determined, and di and [ are given as follows: 

The boundary conditions for the symmetrical pressure disturbance are 

n=O a t  y = O ,  n ' = O  at y=co, (21) 

nt = 0 at y = 0,oo. ( 2 2 )  

and those for the antisymmetrical pressure disturbance are 

Consider the upper half of the jet. Let the half width of the jet be 1, Because 
n is bounded at infinity, h', in equation (18) must be zero for y > I .  Assume that 
the flow is isoenergetic; therefore, the above treatments hold for both inside and 
outside of the jet. By introducing the condition that pressures on both sides of 
the vortex sheet must be equal, it follows that 

n- = K,[exp (&[-y) - exp ( - di[-y)] for 

n+ = K,[exp (tit- 1) - exp ( - dit- Z)] exp [ - dit+(y - Z ) ]  for y > E, ) (23) 

} (24) 

0 < y < I ,  

for the symmetrical disturbance, and 

n- = K,[exp (die- y) + exp ( - dit- y)] 

n+ = K,[exp ( & ( - I )  + exp ( - di[-Z)] exp [ - di[+(y - I ) ]  for y > 1, 

for 0 < y < 1, 

for the antisymmetrical disturbance. The subscripts ' + ' and '- ' are used to 
indicate quantities outside and inside the upper vortex sheet, respectively. 

Let the displacement of the vortex sheet be 

7 = Bexp[i(ax+/9z-act)], (25) 
where B is a constant. The rate of change of the displacement of the vortex sheet 
equals the vertical velocity disturbance a t  the sheet; therefore, from the equation 
of motion (4) it  follows that 

(26 )  

where 
~a a 
Dt at ax7 
- 1 -+u- 

andp' is the pressure disturbance. With the aid of (26) and the pressure matching 
condition, the eigenvalue equations are given by 

p+C-coth ( & ( - I )  (U+-C)' = -j%(K-c)' t+, (27) 

for the symmetrical disturbance and 

for the anti-symmetrical disturbance. For 0 = O", these equations reduce to 
those for a two-dimensional disturbance obtained by Pai and Miles. 
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3.3. Subsonic and supersonic disturbances 

A disturbance is considered subsonic, or supersonic, according to whether its 
wave speed relative to the velocity of the flow in the direction of wave propaga- 
tion is less than, or greater than, the local sonic velocity. Therefore, from (30)) 
5 is real for subsonic disturbances, imaginary for supersonic ones and complex 
for amplified or damped ones. 

Neutral subsonic disturbances relative to both the jet and the free stream 
cannot exist, because in this case the right-hand side of ( 2 7 )  or (28) is always 
negative, while the left-hand side of the equation is always positive. 

When c is a complex number, i.e. the disturbance is amplified or damped, 
both (37) and (38) are complex equations. Each of these equations can be 
separated into two equations; one consists of the real part and the other the 
imaginary part of the original complex equation. It can be shown that changing 
the sign of ci, when 1 U, - cI < a,, will not alter the separated equations (see 
Appendix). Thus c has the form 

where E and F are functions of El, prt and 5*. Since there are always positive ci 
possible, the flow is unstable under subsonic disturbances. 

It is interesting to note that neutral supersonic disturbances relative to the jet 
can exist, because 5- is purely imaginary for these disturbances, and (27) and (28) 
can be written as follows: 

c = E k i F ,  (291 

p+ 15-1 cot (aZl5-1) (U+-c)2 = p- (E-c )2 t+ ,  

p+ 16-1 tan(Ell5-1) ( U - - C ) ~  = - ~ - ( U - - C ) ~ & .  

(30) 

(31) 

Cot ( E l  15-1) and tan (E l  15-1) are not single-valued. Therefore, the eigenvalue OZ 
may be any value, and (30) and (31) give a continuous spectrum for 2. 

In  the absence of neutral disturbances, the flow will be unstable when it is 
subjected to disturbances which are supersonic relative to the jet, but subsonic 
relative to the free stream (see Appendix). 

3. Axially symmetric jet 
3.1. Disturbance equations 

Consider the inviscid flow of an axially symmetric jet or a cylindrical vortex 
sheet of a compressible fluid. Again, the jet flow is assumed to be parallel, so 
that the main flow has a uniform velocity U in the flow direction, say z, only. 
Suppose the flow is subjected to a small disturbance, and the velocity components 
in cylindrical polar co-ordinates are given by 

us = u+u;, u, = u:, Ud = u;, (33) 

where primes are used to denote disturbance quantities. Thus the linearized 
disturbance equations take the following form: 
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momentum 

p - + U -  -(a: 2) =-- 8P' 
ax 

(34) 

(35) 

(36) 

Assume that the disturbance has sinusoidal dependence on both ax and n#, 
where a is the axial wave-number, and n is a positive integer. The disturbance 
is assumed to vary exponentially in time t .  Thus, disturbance quantities may 
be written as follows: 

(39) 
u:, ui, ui = { f ( r ) ,  g(r), h(r)} exp [in# + ia(z - c t )] ,  
p ' ,  T',p' = {7r(r), O(r), m(r) }  exp [in# + ia(x - ct)]. 

By introducing this type of disturbance, the disturbance equations become:? 

continuity (40) 

momentum P(U-C)h = -n, (41) 

(42) 

(43) 

144) 

state 7r/p = mlp + e p .  (45) 

;a( U - c )  m = -P[i(ah -t nglr) +f' +f/r], 

iaP( u - c ) f  = - n', 

aP( U - c )  g = - n7r/r, 

energy ;a( U - c )  8 = - F ( y  - 1) [i(ah + nglr) +f' +f/r ] ,  

Elimination of m, g ,  h and 8 in (40), (41) and (43), (44), (45) in a manner similar 
to that used for the two-dimensional case gives 

f - - = ( U - C )  7r =f'+-. 1 r 
a2+n2/r2 a 

4 U - C ) P  YP 
From (42) and (45), the following expression for the pressure disturbance is 
obtained: 

1 u-c 
7rf' + r - 77' + (a2 [ ( a ) 2  - 11 - g) 77 = 0, (47) 

where a is the local sonic velocity. For a+m, this equation reduces to that for 
incompressible flow obtained by Batchelor & Gill (1962). 

The asymptotic behaviour of 7r is 

,-exp(-arJ[I-(  U(c0) a - c )']I for r+m. 

Again, it is assumed that the flow is isoenergetic, so that equation (47) holds 
for both inside and outside of the jet. 

t For the remainder of this section we use 'prime' to denote differentiation with respect 
to r ,  unless otherwise specified. 
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3.2. Stability considerations 
For neutral subsonic disturbances relative to both the jet and the free stream, 
c is real, and 

where ‘-’ and ‘+’ denote quantities inside and outside the vortex sheet, 
respectively. Therefore, equation (47) becomes a modified Bessel’s equation, and 
the solution for the pressure disturbance is given by 

where 

C, and C, are constants, and In and K ,  are modified Bessel’s functions of the 
first and the second kinds, respectively. Because I, is unbounded a t  infinity, 
and K ,  at r = 0, it  follows that 

7.r- = C, In(ag-r) for r < ro, 

7.r+ = CzKn(ac+r) for r > To, 
I (50) 

where r,, is the radius of the undisturbed vortex sheet. 
Let the displacement of the vortex sheet be 

7 = B exp [in$ + ia(z - ct)], (51) 

where B is a constant. The rate of change of the displacement of the vortex sheet 
equals the radial velocity disturbance at the sheet; therefore, from (35) we have 

where 

and p‘ is the pressure disturbance. Assume that mean pressure in the jet and 
the free stream are equal. From equation ( 5 2 ) ,  with the help of (50), (51) and the 
matching condition that the pressure disturbances on both sides of the vortex 
sheet are equal, the following eigenvalue equation is obtained: 

For real c,  only real and positive In, 1; and K,are obtained, while K; is real and 
negative; therefore, (53) can be written as 

where Ln(aro, g+, F + )  is a real positive number. Obviously, both sides of (54) are 
inconsistent; therefore, this kind of disturbance does not exist in the inviscid 
flow of a cylindrical vortex sheet. 
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3.2.1. Neutral subsonic and supersonic disturbances. When disturbances are 
supersonic relative to the jet, but subsonic relative to the free stream, (47) 
becomes a Bessel equation inside the jet. Since Bessel functions of the second 
kind are unbounded a t  r = 0, the disturbance solutions are given by 

where 

n- = C,Jrt(a<-r) for r < ro, 

n+ = C,K,(a[+r) for r > ro, 
(55) .  

The eigenvalue equation is then obtained by simply replacing I, and I:, in (53 )  
by J, and JA respectively. The equation is 

K J K ;  is always negative for a real argument. Because of the oscillatory 
behaviour of J,, JAIJ, can be negative, and equation (56) gives a continuous 
spectrum for a. 

3.3.3. Ampbi$ed or damped disturbances. In  this case, c, and hence the 
arguments of Bessel and modified Bessel functions, are complex. Solutions of 
the type given by equation (50) are chosen. The reason for choosing K,  for 
r > ro  is that some values of Y, and J, are unbounded when their arguments are 
in the first or the fourth complex quadrant. Thus, solutions for IT are 

n- = CIIn(a[-r) for r < ro, 

n+ = C2Kn(a[+r) for r > ro, 

where C, and C, are complex constants. 
The eigenvalue equation is the same as (53), but this becomes complex. 

(57). 

4. Numerical results and conclusions 
The foregoing analysis can also be applied to the stability of the inviscid wakes, 

since no restriction has been made on the main flow velocities. 
For the two-dimensional jet, numerical calculations have been performed for 

the case of a jet issuing from a nozzle into a stationary surrounding, U+ = 0, for 
both symmetrical and antisymmetrical disturbances. Results are plotted in 
figures 1-6. From figures 4 and 6, as Mach number increases, the amplification 
factor of the disturbances ci decreases except for very small wave-number. 
Thus, the increasing of the Mach number of the jet tends to stabilize the flow. 
There is no upper limit in Mach number, as was found for a plane vortex sheet, 
tbove which the flow is completely stable (Pai 1954; Miles 1958). 

The angle of wave propagation also influences the stability of the flow. 
Figures 1-3 and 5 show that when the angle between the direction of the wave 
propagation and that of the jet flow increases, ci increases except for very small a. 
Thus, the increasing of the wave propagation angle tends to destabilize the flow. 
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It has been made clear by this calculation that supersonic disturbances inside 
the jet may cause instability. When 0 = 0") no eigenvalue has been found for 
the case with supersonic disturbances inside the jet for Mach number M unity 
(figure 1). As the Mach number is increased to 2,  eigenvalues corresponding to 
both supersonic and subsonic disturbances inside the jet are obtained. At even 
higher Mach number, all the eigenvalues correspond to supersonic disturbances 
relative to the jet. 

1 -0 

0.8 

0.6 

5 
u" 
. 
5 
-2 
0 

0.4 

0.2 

0 

1 

I / -  

I I I I 

0.2 0.4 0.6 08 1 -0 

ur0 

FIGURE 7. Wave speed c, (solid or dotted lines) and amplification factor ci for an 
axially symmetrical disturbance, = 0, to  an axially symmetric jet. 

Physically, when the disturbance is supersonic inside the jet, there can be 
acoustic energy transfer from the vortex sheet into the jet. However, if the 
disturbance is subsonic outside the jet, the energy wave inside the jet is reflected 
at  the vortex sheet. When the disturbance is also supersonic outside the jet, 
acoustic energy radiation between the jet and the surrounding fluid occurs. If 
the radiation is small enough, the disturbance may still be destabilizing. Should 
this be the case, the dotted curves in figures 3 , 4 ,  6 and 7 give the eigenvalues for 
supersonic disturbances outside the jet which may also cause instability, but the 
jet is more stable to these than to the subsonic disturbances. 

As far as supersonic disturbances are concerned, either inside or outside the 
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jet, there will be more than one mode of instability, as it is clear from figures 
3 and 6; however, it is expected that the mode corresponding to the smaller 
wave-number is more unstable. 

For the axially symmetric jet, since no prediction can be made analytically, 
numerical calculations for the case of the jet issuing from the nozzle have been 
carried out. The cases n = 0 and n = 1 have been studied. The eigenvalue curves 

1 *c 

0.f 

0.6 
5 
0" 

b 

--. 

2 
0.4 

0.2 

0 

I I I I 

I I I I 

0 2  0.4 0.6 0.8 1 

FIGURE 8. Wave speed c, (solid lines) and amplification factor ci (broken lines) for an 
azimuthally periodic disturbance, n = 1, to an axially symmetric jet. 

are similar to those for incompressible jets obtained by Batchelor & Gill (1962). 
It also shows that the flow tends to be less unstable when the Mach number is 
increased. Although calculations have not been made for the case n > 1, it can 
be seen from figures (7) and (S), as compared with the results for incompressible 
flow, that azimuthally periodic disturbances will be more unstable than the 
rotationally symmetric ones only at small axial wave-number. 
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Appendix 
AmpliJied or damped disturbances for a two-dimensional jet  

Consider subsonic disturbances relative to both the two-dimensional jet and the 
free stream. In  this case, c is a complex number. Let qU be the mean velocity of 
the free stream, where q may be greater or less than unity. Equation (27) can 
be written in dimensionless form 

1 - a2( 1 - c*)2 coth (a"* J{ 1 - @2( 1 - c*)z}) 
T* f (A1) (7) =-J( 1 - @ 2 ( q  - C*)2/T* ) 1-c* 2 

where c* = ClU- = c; +ic:, 
a"" = El,  

@ = No cos 0, 

T" = T+/!F- = l + ~ ( ~ - l ) M ~ ( l - q 2 )  
- 

and 

for isoenergetic flow. No is the Mach number of the jet. The rearranging of (A 1)  
yields 

BZ(q - c*)2 
T* 

x coth{&*J[1-i@2(1-c*)2]}. (AZ} 
The real part of the above equation is 

-!F*{[(1-c,*)2-cc$2]W+2(1-c,*)c~Y} 

= [ (q - c ,* )~  - c;] (3& - XN) - 2 ~ :  (a - c,*) ( X - I  + 2 . N ) ,  (A 3) 

and the imaginary part is 

-Ti*{[( 1 - c:)2-cyj.sp- 2( 1 - cp) cp 9} 
= Z C : ( ~ -  c,*) (2 -d  - XN) + [ (q  - c : ) ~  - cc$'] ( X , X +  SN), (A4) 

1 M z  
Y = - - (q-c,*)c?, 

W T* 

sinh 2&*% 
cosh 2a"*% - COB 2 & * X  ' .A= 
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Note that &?,2 and dl are even in ci and 9, Z and X a r e  odd in ci. Thus, 
changing the sign of ci will not alter equations (A 3) and (A 4), andc takes the form 

c = E k i F ,  (29) 

where E and F are functions of dl, p* and E*.  
For disturbances which are supersonic relative to the free stream, (A 3) and 

(A 4) can still be used. These equations also remain unchanged by changing the 
sign of ci. 

If A and M in (A 3) and (A 4) are replaced by 

& / ( & 2 + N 2 )  and -N/(A2+X2), 

respectively, i t  is immediately proved that the above result is also true for 
antisymmetrical disturbances. 
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